All sounds are produced by:		
pes of Sound Waves	: any sound that c	an be heard.
equencies that the average human ear can hear	(Hz to	Hz)
	(50 Hz - 15,000 Hz at lov	wer volumes)
waves: frequencies less t	han 20Hz.	
Ex. Elephants -elephants communicate throug	gh sound waves between 5-13	5Hz, and the
waves	they produce can travel up t	to 100 miles.
waves: waves wit	h frequencies above 20,000	Hz.
	Ex. dogs, bats, a	and dolphins
refers to objects t	raveling FASTER than the sp	eed of
sound (i.e. faster than 343 m/s)	-	
As frequency increases, wavelength	Therefore	re, subsonic
waves have wavelength	s, while ultrasonic waves wa	ives have
wavelengths. Ult	rasonic waves are used by d	octors to
produce images inside the human body. They	are able to do this because th	he
wavelengths of ultrasonic waves are short and	are easily reflected off small	objects.
is the rate of	energy flow through a given a	area and is
measured in (dB)		

Intensity and Frequency determine which sounds are audible.

The softest sounds that can be heard by the human ear occur at the <u>threshold of</u> <u>hearing</u> The loudest sounds that can be tolerated by the human ear are those at the <u>threshold of pain</u>. Sounds above this can still be heard, but are harmful and painful. Decibels relate the intensity of a sound wave to the intensity at a threshold of hearing. When intensity is multiplied by ten, 10 dB are added. A difference in 10dB also means that the sound is twice as loud.

If we have 100 times more energy in a sound wave, how much louder does it sound?

If we have 100,000 times more energy in a sound wave, how much louder does it sound?

If a 50 dB sound has 1,000 times more energy than a soft sound, what is the decibel rating of the soft sound, and how much softer does it sound?

Intensity to Decibel Levels

Intensity	Decibel	
(W/m ²)	(dB)	
1.0 x 10 ⁻¹²	0	threshold of hearing
1.0 x 10 ⁻⁹	30	whisper
1.0 x 10-7	50	normal conversation
1.0 x 10 ⁻⁴	80	alarm clock
1.0 x 10 ⁻³	90	Threshold of permanent damage
1.0 x 10 ⁻¹	110	car horn
$1.0 \ge 10^{\circ}$	120	threshold of pain
1.0 x 10 ³	150	nearby jet

The Human Ear

Outer ear: transfers sound waves to the eardrum

Middle ear: transfers vibrating sound waves from the eardrum to the cochlea

Inner ear: receives vibrations from the middle ear and transfers them into nerve impulses that are interpreted by the brain as sounds at different frequencies.

General Categories of Instruments

Strings Brass Woodwinds No reed Single reed Double reed Multiple reed Percussion Electronic