Besonance of Sound lab

Name_

<u>Purpose</u>: To calculate the speed of sound in air, and to understand resonance.

<u>Procedure</u>: Take a tuning fork, start it vibrating **** ONLY USING RUBBER STARTER **** and hold it over the top of your tube. Slowly lower the volume of water until you achieve a resonant situation. Measure the height of the air column. Repeat for a different tuning fork. Find out air temperature and column diameter. Cleanup & calculate. <u>Results/Questions</u>:

			Air Temperature:	٥C		
Data/Calculations:			Column Diameter:	cm		
Trial	One	Two	1. The column length is corrected			
Frequency of fork (Hz) (f)			column vibrates as if it was in the tube. Put your answer in the			
Measured Resonant Length (cm)			 Corrected length = Measured length + .4 x tube diameter < 2. How much of a wavelength does resonance #1 represent? Why? 3. Calculate the speed of sound using v = f λ and put it in the table. 			
Corrected length (m) (unit change!)						
Corrected full wavelength (m) (λ)						
Calculated Velocity of sound (m/s) (v)						
% difference	% difference 4. sc			4. To calculate the <u>actual</u> speed of sound, use the following formula: v = 331 + 6 T		
			$v_{actual} = 331 + .$	6 T		

 $v_{actual} = \underline{m/s}$

5	Coloulate 0/	difference	and	nloop	in c	oloulationa	tabla
J.	Calculate /	unierence	anu	place I	шс	alculations	labic
				1			

6. What other wavelength portions could you use to get resonance using this setup?

table.	(Actual - Calculate Actual	<u>ed)</u> *100

7. What is the smallest length tube you need to hear your fundamental resonance if the air temperature was 120 degrees and you used a 279 Hz tuning fork?

