Today we begin real physics! But what is physics? Physics is the study of: _____ and _____!

Last time, you copied many words into your notes: They came in pairs: <u>vector</u> and <u>scalar</u> versions ______ was scalar, ______ vector ______ scalar, ______ vector The scalar numbers are concerned only with the <u>magnitude</u> of the number Vector numbers have both a

I walk 15 steps forward... What is my distance?

_____ and a

My displacement?

(Continuing my trip...)
I turn around and walk 10 steps
back...
What is my total distance
traveled?

What is my displacement?

WORKING WITH WORD PROBLEMS... The most important trick is to <u>read the unit</u>! That's the little letters that appear after the numbers! (they tell you stuff!)

14.3 m/s 12 days How about m/s and m, km??? These may have been new to you. m, km, cm, and the like are all forms of the unit meter, which is a distance or _____ unit. m/s or km/hr are both units of speed or _____ You MUST associate these in your mind! Today's lesson involves accelerations! An acceleration is a change in _____. Any change. When the speed gets faster, we call it a (+) acceleration. When it gets slower, we call it a (-) acceleration. Make sure (-) numbers are plugged in as such! To calculate the acceleration, we need to find the slope of the line. Formula(s):

Clari was driving at 14.3 m/s when she notices the nice officer. 3.27 seconds later, she is driving a respectable 9.71 m/s. What was her acceleration?	Erika was driving at 12.93 m/s when a cat jumps out in front of her. She slams on the brakes at a 19.8 m/s ² rate and skids to a stop. How long was she braking?
We know:	We know:
Clearly the formula to use is:	We'll use the same formula:
$a = (v_f - v_i) / t$	a = (v _f - v _i) / †
Plugging in we get: (9.71-14.3) ÷ 3.27 = which we round to:	But we'll algebra for t, which flips the a and t around to get: t = (v _f - v _i) / a
, but what is our unit? The unit to learn that always goes with acceleration is: $m/s \div s = m/ss$ or m/s^2	Plugging in we get: (0 -12.93) ÷ -19.8 = or
	For homework:

do Pbs B!