$F = ma \ Lab \ Period$

Name

Purpose: to see if Newton was on crack or not.

Procedure:

- 1. Set up air track as shown in class.
- 2. Add 50-60 grams of mass to the glider using 10 or 20 gram weights. Be sure the masses are distributed symmetrically so the glider is balanced. Determine the mass of your glider **with the hanging masses** and record the total as **(m_{total})** below.
- 3. Move masses from the glider to the hanger to change the $\mathbf{m}_{\mathbf{a}}$, but not the overall $\mathbf{m}_{\mathbf{total}}$.
- 4. Determine accelerations from lab equipment and record in "a experimental."

Data/calculations:

m_{total}=____kg

Trial #	m _a	F _a	a _{calc}	a _{exp}	% difference
1	.010 kg				
2	.020 kg				
3	.030 kg				
4	.040 kg				
5	.050 kg				

Calculations:

1. Solve for **a** (experimental) by the graphs in the experiment window.

- 2. Determine $\mathbf{F}_{\mathbf{a}}$ by multiplying $\mathbf{m}_{\mathbf{a}}$ by \mathbf{g} .
- 3. Determine **a**_(calculated) using the formula **F** = **ma**. (USE M_{total}, NOT **m**_a!)
- 4. Calculate % **diff** between **a** values. Use **a**_(calculated) as your actual value.

Results:

- 1. Graph **a**(exp) vs. **F** on the computer. (Which variable is independent?)
- 2. If the relationship between **a** and **F** is direct, what kind of line do we expect? What did we get?
- 3. Calculate the slope of the line. What does this value represent?
- 4. If the lab were repeated on the moon, which has a lower gravity, how would the results change?
- 5. Why does **m** have to include the hanging mass as well?