Newton's 1st EWSH!

- "An object in motion tends to stay in its present state of motion in a straight line unless acted upon by an unbalanced force."
- i.e. objects like to ______
- (inertia)
- There are a couple conditions of note:
- Motion is ______
- in a _____

Examples....

Starting (zoom) Cars on icy roads Ice in drinks Cars on interstate Stopping short Jacks in the trunk CD's on the dash Pigs in space

Newton's 2nd EWSH!

 "An unbalanced _____ will produce an _____ directly proportional (and in the same direction)

to the force and inversely proportional to the "

• In formula form: a = F/m or...

F = ma!

- The most important formula in all physics!
- Note new terms!

Force, mass & acceleration

- Acceleration we know unit: <u>m/s²</u>
- Mass we know as the amount of matter in an object, and it's unit is grams or <u>kg</u>
- Force is new!
- They are pushes and pulls, and have the unit from the formula:
- F = ma, so kg · m/s² = N which stands for Newton!

Let's try a problem!

Andrew shoves a 8.67 kg box across the floor, accelerating it to 2.93 m/s over a 14.0 m displacement. How hard was he pushing?

Newton's 3rd EWSH!

"Every _____ has an equal

but opposite _____

- i.e. pushes come in pairs
- There are a couple conditions to note:
- While pushes are paired, they act on different objects!
- Forces paired push oppositely
- Swimming Rowing Jumping

Newton #3, F = -F Therefore, since F = ma, then ma = -ma

Car mileage

Trade in a small car for a newer, larger, more aerodynamic vehicle:

What happens to in-town mileage?

What happens to interstate mileage?

Football player's size

Purpose of linemen

Size of linemen

Purpose of running back

Size of running back...

Get it?

Got it?

