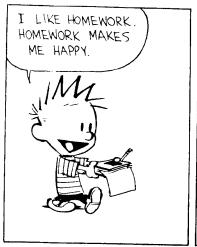
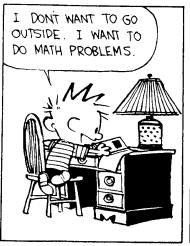
Flat shot trajectory! Name_

Purpose: To accurately calculate range of a projectile

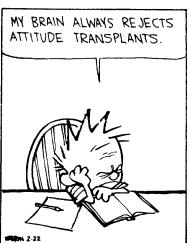
Procedure: Launch the projectile straight horizontally 4 times. Measure dh and take average. Measure Projectile's launch height and calculate t_{down}. Calculate V_h. Measure table height and calculate t_{down} to floor. Calculate d_h. Test range measurements with the teacher watching. (No practice shots!)


Formulas:
$$t_{down} = \sqrt{\frac{2d_{v}}{g}}$$

$$d_{h} = v_{h}t$$
 % diff = (actual - calculated) * 100 actual


Data: be sure to convert to m from cm! **Calculations:**

Average d _h to table	m	Time down to table	s
Launch Height (d _v)	m	Initial V _h	m/s
Table Height	m	Time down to floor	s
Total Height (d _v)	m	d _h to floor (calculated)	m
Measure this AFTER all the calculations		See formula above	
Actual d _h	m	Percent Difference	%


Questions:

- 1. What formula did you use to calculate dh? Why?
- 2. Is wind resistance a factor here? How big of one? Why?
- 3. What happens to the vertical component of the velocity the longer the projectile falls?
- 4. What happens to the Horizontal component of the velocity?
- 5. What things in real life act like this?

