CENTRIPETAL FORCE LAB

Name_____

<u>Purpose</u>: This lab shall demonstrate the relationship between force, string length and speed in a circularly moving object.

Formulas:	$F_c = mv^2/r$	$C = 2 \pi r$						
Materials:	Glass tube	Thread		Stopper (2 hole)				
	Masking tape	Masses (100 g &	200 g)	Stopwatch				
Procedure: Set up apparatus as shown in class. Time ten periods of circular motion with								
your thread radius set at a 50 cm length and a 101 g mass providing the Fc. Repeat using a								
100 cm length. Time a third time with a 201 g mass. Clean up area and equipment, THEN								
do calculations!								

<u>Data:</u>

Setup	Stopper Mass (m)	Hanging Mass	String Length (r)	Time (10 cycles)
1		.101 kg	.50 m	
2		.101 kg	1.00 m	
3		.201 kg	1.00 m	

Calculations:

Setup	Period (T)	Circumference	Speed (v)	Calculated F _c	Actual F _c
1	s	m	m/s	Ν	Ν
2	s	m	m/s	Ν	Ν
3	S	m	m/s	Ν	Ν

Conclusions:

1. What provides the <u>actual</u> centripetal force?

- 2. How does the length of the string affect the Fc, and why?
- 3. Why does the increased Fc result in an increased speed?
- 4. What were your % errors for trials 1-3?

5. If we used the 100 cm string length and the stopper was spinning at 5.83 m/s, what mass was hanging on the hook?