|--|

Name			

<u>Purpose</u>: to calculate the final temperature of a mixture.

<u>Procedure</u>: (1) Weigh cup (2) fill cup 1/3 full of cold water (from drinking fountain) and reweigh (3) reassemble calorimeter and take initial temperature (4) take temp. of hot water, then gently pour hot water into calorimeter cup until cup is 2/3rds full (5) stir and get final temperature (6) reweigh the cup with the waters in it (7) Clean up.

Data:

llations:	ul	lc	Ca
-----------	----	----	----

	-				
Specific heat of cup	903 J/kg ^o C kg		Mass of cold water	kg	
mass of cup					
Mass of cup + cold water	kg		Mass of hot water	kg	
T _i of cup + cold water	o _C				
T _i of hot water	T _i of hot water		ΔT of cup + cold water	oC	
T _f of cup + mixture		$^{ m oC}$			
Mass of cup + mixture	of cup + mixture kg		ΔT of hot water	oC	

Questions:

- 1. How much heat was lost by the **hot** water? $Q = m c \Delta T$
- 2. How much heat was gained by the $\underline{\text{cup}}$? Q = m c ΔT
- 3. How much heat was gained by the <u>cold</u> water? $Q = m c \Delta T$
- 4. How does the heat <u>lost</u> compare to the total heat <u>gained</u>? Why is there a difference?
- 5. Why do the cup and the cold water always have the same temperature?
- 6. What is your theoretical T_f ? % error?

$$T_f = \underbrace{mcT_i + mcT_i + mcT_i}_{mc + mc + mc} = \underline{\qquad}^oC \qquad \% \text{ error } = \underbrace{(\underline{Theoretical} - Actual)}_{Theoretical} \times 100 = \underline{\qquad}_{Theoretical}$$