Specific heat Lab

Name			
· · • · · · • <u></u>	 	 	

Purpose: to calculate the specific heat of a metal.

Procedure: (1) Weigh cup (2) fill cup 1/2 full of tap water (from sink) and reweigh

- (3) reassemble calorimeter and take initial temperature (4) gently place hot metal into cup
- (5) stir and get final temperature (6) weigh the metal chunk (7) Clean up.

Data:

Calculations:

Specific heat of cup	903	J/kg°C	Mass of water	kg
mass of cup		kg	ΔT of water	°C
Mass of cup + cold water		kg	ΔT of cup	°C
T _i of cup + cold water		°C	ΔT of metal	°C
T _i of metal (hot water)	100	°C	< Why is this 100°?	
T _f of cup + water + metal		°C		
Mass of metal		kg		

Questions:

- 1. How much heat was gained by the water? $Q = m c \Delta T$
- 2. How much heat was gained by the cup? $Q = m c \Delta T$
- 3. How much heat must have been <u>lost</u> by the metal? Q total
- 4. Calculate your specific heat based on the answer from #3 $c = Q / m \Delta T$
- 5. My metal was _____ and its actual specific heat is _____ (get this info from instructor!)
- 6. % error = (calculated actual) / actual * 100
- 7. Why is there a difference between your value and the accepted value?